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Nonlinear Phase Adjustment of Selective Excitation Pulses
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*A continuous transformation of an RF waveform with a mod- by the inverse scattering method. The inverse scattering form
ified Korteweg—de Vries equation or generalization can be used to  jsm pro\/ides ana|ytic expressions of the RF waveforms for a ve
adjust the phase behavior of a selective excitation pulse while  proad class of selective excitation pulse profiles. Within the tyy
preserving the magnitude behavior of the spin response. This ¢ yrofiles with solvable waveforms is a class of profiles, th
transformation has applications in removing or adding t(_’ the limiting case of which has a perfectly square magnitude profi
nonlinear phase properjues of a :sele_cted region. © 2000 Academic Press (1-3. The phase response is determined by the analytic struct

Key Words: selective excitation; RF waveforms; Bloch ’ 4 . A
equations. _of the excitation profile; as such_ the _ph_ase of the profile is h_ot .

independent parameter. There is a limited degree of flexibility
the calculation whereby the phase of an excitation pulse can
INTRODUCTION discretely adjusted while preserving the magnitude of the profi
(2); however, the method presented here is distinct and mu

Proper design of an RF waveform for selective excitatiomore flexible. While the formalism is closely connected to invers
requires consideration of both the magnitude and the phasescéttering theory, the method can be used on waveforms cal
the spin response following application of the RF pulse. Gelated by any technique.
erally, the problem of tailoring a selective excitation pulse
treats both quantities simultaneously. The method presented PHASE RESPONSE FORMALISM
here shows that the phase of a response can be continuous
adjusted while keeping the magnitude profile of the excitati:g:

I
‘lyhe time evolution of a spig-particle with only a spin
ree of freedom in a magnetic field is determined by

unchanged. Direct manipulation of the phase response in . .
chralinger equation,

selected profile through modification of the RF wavefor
allows the pulse designer to adjust the phase after the magni- 5 "
tude behavior is satisfactory. Applications in the design of RF ifi — = — R o By, [1]
waveforms described here include both the removal and the at 2

introduction of phase variations through a selected region. ) ) . ]
With the methods described here an odd-order polynomi1€re¥ is a 2-spinor wavefunction for the spin state of the

phase response can be adjusted in any waveform. partiple, v is the gyromagnetic ratio, an.a‘i _are.the Pauli

This will be illustrated in two situations: the first is in flattening{rices. The component of the magnetic field is a constan
the phase of an excitation pulse designed with peak amplitl8dime while thex component is the time-dependent amplitud
close to the truncation point of the waveform, and the second is@fdulated applied RF field. In an imaging application, the
introduction in an irrelevant phase factor in an inversion pulse GPMPonent varies linearly over spa&, = Gz while thez
order to reduce peak RF level. In the first case, the initial wa/g2MPONent in a spectroscopy experiment is the constant off:
form is designed to vanish a short time after the peak amplitudi§/d seen by the nuclear spin. For most of this work th
This type of pulse is advantageous for short echo time selectRf@Plem will be phrased using the terminology from imaging
excitations. However, this pulse has significant phase dispersif{VeVer, every statement will have a corresponding analog
through the selected region. A pulse designed with absolutely ff3¢ SPectroscopy viewpoint. _
phase, on the other hand, requires a long time for the RF wave!f We drop a constant factor df on both sides of Eq. [1] and
form after the peak and so is not as suitable for short echo tif#€ @ second time derivative, we can rewrite Eq. [1] as
uses. By a careful adjustment of the phase response we §8fond-order differential equation,
modify the initial waveform and produce a nearly flat phase with .
only a slight increase in the temporal extent of the RF pulse. oy VY .

. . . . ai d(o - By)
The calculation will be illustrated using waveforms generated 2

2
. —I1
! Present address: Lawrence Berkeley National Laboratory, 1 Cyclotron _ Y Y
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This expression simplifies since only theomponent oB has 1
a time dependence ansl - B squared is equal to the 2 by 2 " € fort — —o
identity matrix multiplied byB?. Next, define a new 2-spinor X1~ )1 ¥ . 8]
x Which is a unitary transformation of the original, = (a*e™ — gre ™) fort — o
\r‘
Y= iﬁ ( 1 1) . [3] Since the potential in Eq. [5] is diagonal, we can consider tt
\2 -11 solutions to the upper and lower componentsycfeparately.

Each component of solves a second-order differential equa

We assume that there is a characteristic length scale in @ which formally looks like a time-independent Sttiger
problem,z,; this allows us to define the dimensionless lengtigduation,

time, and field parameters
2

d
T at? x1+ V) x: = kzXl' [9]
lv|Gzt By

2 ' Gz’ [41

z/z,,

For the upper component gfthe potential in this equation is

) o o ) ) —B? — i9,B, andt takes the place of the spatial coordinate ir

In the x basis, the Schidinger equation in the dimensionlessye schrdinger problem. The solution for the lower compo-

variables is diagonal and has the simpler form nent, x., is similar except that the potential is the negative o
the complex conjugate of that for the upper component.

d2 -B2—9,B, 0 , The form of this equation is referred to as a Sturm—Liouvill
“gext < 0 B2+ iatBX>X =k, [5] eigenvalue problem in analysis. The basic structure is
— 2
with Lf(t) = k*(1), [10]
with L = —d?/dt®* + V(t). For the NMR problem we are
k2= (2/z,)> [6]

interested in solutions to the Schlinger problem that are
complex exponentials in time for large values of time. Thes
For sufficiently large negative and positive values of timére the positive energy, or scattering, solutions of the ‘Sthro
the applied RF field is essentially zero and the solutions to tifger problem and not the normalizable, bound state negati
Schralinger equation are superpositions of the solutions ofesergy solutions.
particle in a constant magnetic field. These have a time depenA problem associated with the study of nonlinear partic
dencee™™. The effect of the application of a time-dependerdifferential equations has been methods of calculating tt
magnetic field in thex direction to a spirk-particle is to rotate solutions to a Sturm-Liouville eigenvalue problem after moc
the spin. The superposition of states at large negative time wifying the potential while keeping the eigenvalue constant. .
the superposition at large positive time are connected to onell-established property of Sturm-Liouville problems is tha
another with a unitary transformation. For the wavefunctipn we can find a one-parameter transformation of the potent
the relation between the two forms is a multiplication of thehich preserves the eigenvalues of the operatpri(et f be
2-spinor by an SU(2) rotation matrix. The parameterizatiotny solution for an eigenvalu€ in a Sturm-Liouville eigen
used here will follow Ref. 1); the SU(2) rotation matrix is  value problem. For a differential operatQr if V evolves in a
parametess according to

<_g* ﬁ) [7] 9V =[C, L]=CL - LC, [11]

then the eigenvalues in the Eq. [10] are unchanged and t

H 2 2 __
with |of* + |B* = 1. volution off is determined by the differential equation

Prior to the application of the RF waveform, the initial statg
of the spin is relaxed in the static magnetic field. The wave-
function therefore is in an up state in the original basis with a asf = Cf(t, s). (12]
time dependence™. After the RF, the wavefunction in the
original basis is a superposition of the an up state with a tinflen the notation of Ref. 4), the coordinate in the Sturm-—
dependence™ and a down state with a time dependerct. Liouville problem is labeled and the new parameter is labelec
This implies that the upper component in fhbasis set has thet. This is changed here to udeas the coordinate in the
limiting form Sturm-Liouville problem and as the new variable. The op-
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eratorC is denoted byB in Ref. @). The notation is changed of s the transition amplitude for a spin up to spin up transitiol
in this paper to prevent confusion with the magnetic field.) (the term proportional ta*) is independent o§ while the spin
The construction of the operatoG, is given in Ref. 4). flip amplitude (theB* term) has ans dependence® ®. The

There is an infinite set of operators we can construct which grefile of the excitation response of a waveform is proportion:
labeled by an integer indexy. The general form for the to the producte*B (1); therefore the excitation profile will
operatoIC, is that it has a maximum odd-order derivative terrhave thes dependence ***°.

plus a sum of lower odd-order derivative terms while the If we were to ignore the nonlinear term in Eq. [16], then the
operator overall must be skew-symmetric. Up to an overalblution to this differential equation is trivial: we could Fourier

constant factor, the operator is transform B,, multiply by a phase factoe"**, and inverse
Fourier transform. Linear response theory predicts that mul
gt oo _— _— plying the slice profile by a desired phase response and inve|

Co= gzt t > aiV) die1t gE gi(v), [13] Fourier transforming the result gives the waveform needed f
i this profile. Ignoring the nonlinear effects in spin rotations i
equivalent to ignoring nonlinear effects in the modified Kd\

with the functionsg;(V) determined by the requirement thaduation.
[C., L] depends only orV and its derivatives and does not

contain any residual derivative operator terms. This require- NONLINEAR PHASE CORRECTION
ment provides a set of simultaneous differential equations for
the functionsg;(V) which can be solved for any value of The selective excitation desired typically in an imagin

The lowest order nontrivial case is a third-order operatorprocedure and often in a spectroscopy experiment is to hav
constant and uniform flip angle over a limited spatial (o
C,= 403+ 2Vo, + 2(3V)). [14] frequency) range and zero response outside that range. Fol
RF field polarized along thg axis in the rotating frame, the
spin flip transition amplitudeg, is —i sin(6/2) inside the
response range and zero outside that range.

The inverse scattering method allows one to calculate tt
exact RF pulse which produces a desired spin flip transitic
amplitude provided that the amplitude is specified as a ratio
polynomials in position (in an imaging application) or fre-
etﬂjency (in a spectroscopy experiment). A convenient form
take is

The evolution of potentialV, generated by the differential
equation [11] is the Korteweg—de Vries (KdV) equation,

NV +[L, Cl=0V—aV+6VaV=0. [15]

This can be satisfied only if the RF field satisfies a modifi
version of this equation,

9B, + 9B, + 6B2),B, = 0. [16] —i sin(6/2)

T iekE [19]

The overall constant, 4, in Eq. [14] was used to make Eq. [16]
in the standard form for the modified KdV equation.

In the asymptotic regimes of largeV approaches zero; thiswherek is either position divided by the slice half-width'z,,
implies the asymptotic form for the operat®y is 497. Thisin or frequency divided by the half-width of the excitation re-
turn implies that the arbitrary solutiofy, satisfies a differential sponsef/f,. For a sufficiently large, this describes a profile

equation for large negative and positive time: which is arbitrarily close to the ideal rectangular pulse. B
examining the behavior for various valuesrpfwe can select
af(t, s) = 403(t, ). [17] @ pulse and profile with sufficient profile sharpness and acce

able temporal extent of the RF pulse. In general, both sharpne
and temporal extent increase msncreases.

The denominator in Eq. [19] can be factored into a produc
of termsk + 7, wherer; is one of the ath root of —1,

When we substitute our particular solutign, into this differ
ential equation, we can see that the solution inHeasis set

'S @72 "In Ref. @) it was shown that if we were to modify
1 the profile described in Eq. [19] by taking the product of term
_ gikt—4iks fort —» —oo in the denominator only those terms with roots that lie in th

X1 — \JE upper half plane then the RF waveform vanisheg foer0. The

iﬁ (a*eki-4ks _ Bxg-ikitaks) fort — o basic characteristics of the profile remain the same and depe
\2 only on the number of roots used: if we select tmtroots of
[18] —1 that lie in the upper half plane (there areof them), the

profile is approximately the same in magnitude as if we ha
Or, if the potential evolves according to Eq. [15], as a functioselected th&/ 2th order profile in Eq. [19]. In the limit off —



PHASE ADJUSTMENT OF SELECTIVE EXCITATION PULSES 213

c the magnitude of this profile is a perfect rectangular selectige
excitation. The RF pulses generated with this form for the spin
flip transition typically have most of their pulse energy con-
centrated shortly before tinmte= 0. This feature makes these -
pulses ideal for NMR sequences with short echo times: since
every RF pulse must be truncated on both ends in order to be |
used in an experimental apparatus, these pulses can be tryn-
cated exactly at = 0 with no degradation in selection profile
and relatively little time for decrease in transverse magnetiza- |
tion due toT, decay. Truncation for negative times is less of a
concern since as excitation pulses they generally can be exs
tended for large negative times without any penalty in an
experiment or significant truncation effects in the profile.
Computed waveform and profiles for the pulse witk= 10
are shown in Fig. 1. The phase of the selected region imme-
diately after the RF is turned off has five wraps through 2
across the selected region. In an imaging situation the slice +
select gradient is reversed after excitation, adjusting the linear -
phase across the selected region for a flat response. The phase
shown in Fig. 1 is after the linear phase ramp has been |
removed. The phase in the center half of the selected slice is 5o, g%
flat, but there is an apparent higher order phase twist through
the slice. The result of fitting the phase in the regigh< 1 b
is that the phase is approximated by the odd-order polynomidl 7

b~ —2.59K%+ 2.97k5 — 3.70&k" + - - - [20]

fav]

We want to provide a maximum coherence of the magnetiza-[! |4}/
tion within the selected slice; to do so requires a flatter phagel; /!
to align the magnetization more completely within the selected ]!,
region.
We could adjust the phase response through the diSCI‘@EE"“m‘mnH}
method described in Ref2). However, this requires much 1:w.[}\‘w}}‘
higher peak RF power and is not completely successful in ‘:m,\.;wp
flattening the phase in the example waveform. Alternatively we i l; | "HHH[':;
can modify the locations of the zeroes of the denominator of |31/
the spin flip transition amplitude. By moving the factors
away from the prescribed locations we can achieve a higherfj|iiiny, 7
degree of phase flatness, but this is seen to degrade the squoa(“rfl
ness of the profile of the magnitude substantially. I
The computed profile shows that there is a residual cubic |
phase variation across the slice; this implies that we could ;" T,
remove it by modifying the spin flip transition to include an
exponential factor

(=]

Iy
"l“ X
i

FIG. 1. (a) Amplitude modulation envelope of the RF waveform to
produce a 90° excitation pulse corresponding to Eq. [17] with 10. The
time and field are given in dimensionless units defined in Eq. [4]. (b) Th
resulting magnitude of the transverse magnetization (solid line, left vertic
scale) and phase (dashed line, right vertical scale) immediately after the |
pulse. The phase is shown after a linear ramp has been removed. The nom

. . . width of the selected slice extends frdm= —1 tok = +1.
While there is an exact solution to the waveform for a transi-

tion amplitude which is a ratio of polynomials kj there is no

such closed form solution for the waveform which includes thisquation numerically to give the waveform with the cubi
exponential factor. The RF waveform evolved according to tiphase eliminated.

modified KdV equation has exactly the desired cubic phaseSolving the modified KdV equation numerically is a
dependence. It is a simple matter of solving the modified Kd&traightforward boundary value problem which can be dor

B(z, s) = p(z)e>*9%, [21]



214 J. W. CARLSON

using the implicit spectral techniquB)( Given an initial con- a
dition B,(t, s) for some value of, the solution at + dsis
approximated by

B,(t, s+ ds) — B,(t, s)
ds 5 s
~—5 (07B(t, s+ ds) + a;B,(t, s)

+ 20(B3(t, s+ ds) + Bi(t, 9))). [22]

Let B,(w, s) be the Fourier transform inof B, andB3(w, s)
be the Fourier transform d;. This allows us to reduce Eq.
[22] to

1-inds2 . iwds

Bi(w, s+ds) =377 Jsgg2 BX@ 9 + 1 54e2

-0.2 - -

X (B¥w, s) + BYw, s+ds)). [23]

_30 20 ~10 0 10

The right-hand side of Eq. [23] contains the Fourier trang
form of B at boths ands + ds. We can solve this iteratively 1.2 ————— —— —
by initially replacingB:(w, s + ds) on the right-hand side o
with the value as. After a Fourier transform, the left-hand side [i1;!
gives a first estimate fdB,(t, s + ds). Cube this in the time |
domain, Fourier transform, and then use this as the estimate for-i1; 1
B(w, s + ds) on the right-hand side in the first iteration. This [:«n‘ h
process can be repeated until it converges in usually a fQ\/g*T:lw h
iterations. J‘w:“u

An example of the evolved solution for the waveform at [},
s = —0.324 and the coputed profile are shown in Fig. 2. o [l |
Again, the phase is displayed after the linear phase ramp hasg;''\!'! |
been removed. The overall flatness of the phase of thel! !,

[N
response is apparent. Improvements in the coherence result!i i

i

in 43% more signal within the nominal selected slige,< ** A

1. The cubic component to the phase variation across the,;: i
slice is removed, but the fifth- and higher-order contribu- 'J’W
tions are unchanged. 02 ’H Y

The remaining phase variation is fifth and higher order. V!
Higher order generalizations of the method of Rédj.dan be ‘
used to generate higher-order versions of the KdV equatiort._;—
For any value ofh, we can generate an operaty so that in

the asymptotic regime the scattering states satisfy

0

FIG. 2. (a) RF waveform with the cubic phase contributions removed. Th
temporal extent and peak amplitude of the waveform have increased slight
(b) The calculated magnitude and phase of the RF pulse with the cubic ph:

0.f(t, s) = ¢,0 f””f(t, S). [24] contribution removed.

0B, + 9B, + 9,(6B3 + 10B,(9B,) 2+ 10BZ9?B,) = 0.
Evolution of the RF waveform with Eq. [11] will result in [25]
modified (21 + 1)th-order phase without changing other con-
tributions. The asymptotic form of the evolution equation for the scatte
The fifth-order phase can be removed through evolution iyg solutions is
the partial differential equation derived using the same meth-
ods as the third-order correction. The proper equation is asf(t, s) = 16071(t, ). [26]
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FIG. 3. RF waveforms with additional corrections for fifth- and seventh-order phase errors (left) and resulting transverse magnetization graphme (rig
waveform with third- and fifth-order correction (upper two graphs) is only a minor modification of the previous case, while the addition of theosdsrentt
correction drastically expands the temporal extent of the waveform and makes it more nearly symmetric. The waveform with the third- and fiftfectider co
has less coherent magnetization than the third-order correction alone; this is due to a partial cancellation of the fifth- and seventh-order effects.

The spin flip transition amplitude has a phase dependerregion. This manifests itself as an apparent degradation of t
e***. The seventh-order correction is determined by the evphase behavior after only the fifth-order correction is appliet
lution equation for the RF field, The integrated magnetization within the selected slice is 23
below the profile with only the third-order correction. The
B, + 9{By+ 0,(20B] + 140B3(9,B,) 2 + 70B;0 B, basic property of the pulse is preserved in the third- an

2.2 2o 1 2 fifth-order correction: the pulse is largely confinedtte< O
+ 70(0:B,) “9{B, + 42B,(9{B,) with only a minor change in the peak amplitude. With the
+ 56B,0,B,0:B, + 14B29{B,) = 0, [27] seventh-order correction, the pulse substantially exten
through 0 and becomes much more nearly time symmetri
and the asymptotic form of the equation for the scatterirfgimination of the seventh-order phase adds only more th:
solutions, 1% to the total magnetization within the selected slice con
pared to the third-order corrected pulse—it is only 0.3% belo
asf(t, s) = 640/f(t, s), [28] the magnetization of a perfect pulse—however, it comes at |
cost of greatly extending the time of the pulse. In an exper
with an associated phase dependence of the transition amfignt in which we wish to truncate the RF pulse soon after tf

tudee 2%, peak RF, we would expect that the waveform in the las
The final adjusted waveforms (using the valuss= example would have a much larger truncation artifact in th
—0.0928 for thefifth-order evolution ands = —0.0290 for profile; this result is confirmed in calculations. However, th

the seventh-order) and profiles are shown in Fig. 3. In thpilse with only the third-order phase correction applied he
original profile there was a partial cancellation of the effects @kry nearly the same integrated signal but still allows trunc:
the fifth- and seventh-order phase variation across the seledied of the pulse close to the peak. As an excitation pulse wil



216 J. W. CARLSON

3 ~ I T given by a sinc waveform at the same nominal slice thicknes
I After evolution with the modified KdV equation t8 = 0.5
| (dashed line) os = 1 (dashed—dotted line) the pulse loses th

] time symmetry and reduces the peak RF by almost a factor
\ 3, yet maintains precisely the same inversion profile.

The additional phase twists would make this pulse unsuite

to a refocusing pulse unless the excitation pulse was desigr
g ] to have a matching nonlinear phase behavior.

|

A CONCLUSIONS

/i \ i

// A " | Two cases which have been exactly solved in the past ha
! b A\ : been time-symmetric excitation pulses and time truncate
M

!

- i
| VA /f\ ’ ‘)/ \\ I AN . . .
BRI aS i g I \ Vas pulses, those which vanish beyohd= 0. While the former
L v / { | i
y
L

o

/

\

\ i Y / \/ 1 pulse has perfectly flat phase, the temporal extent of the wa
oo |

\

3 \\/ | form makes them difficult to achieve short echo times il
! \v j selective excitation experiments. The latter pulses, howevi
-1 v . have significant signal degradation because of incomple
phase coherence in the selected region.

S N N B Subtle changes in the phase response of selective excitat
-20 -10 ¢ 10 20 . .

profiles can have a large impact on the waveforms used
_ FIG. 4. Shown are 18_0" inversion pulses corresponding to 0 (solid generate them. Waveforms which normally produce an una
line), s = 0.5 (dashed line), and = 1.0 (dot-dashed line). All three cantaple amount of phase variations through a selected sl

waveforms give precisely the same inversion profile. . . .
can be adjusted to a much higher degree of flatness with or
a minor modification of the pulse. However, in other case

hort echo ti th ¢ ith onlv the third-ord demanding absolute flatness can result in large modifications
short echo times, the wavetorm with only the third-ord&, q pulse. In cases examined here, the additional phase flatr

correction is preferable to either with higher-order corrections, - o citation pulse produced by removing fifth- and seventl

order phase variation greatly extends the pulse and produces
significant change in the magnetization within the slice. B
hoequ correcting for a third-order phase variation, we achiev
&arly all possible phase coherence and still largely maintz
e ability to truncate the pulse after its peak.

For the inversion pulse, phase is irrelevant. Producing
?se with flat phase normally results in high peak RF powe

INVERSION PULSES WITH DECREASED AMPLITUDE

As is apparent from the preceding results, achieving a hig
degree of phase flatness produces RF waveforms with hig
peak RF power. As an alternative to using cubic phase adju
ment to flatten the phase response, we can purposely distort th
phase response in situations where it is not important if we ¢ . . ) :
achieve lower peak RF waveforms as a result. For example, f5rxing this phase constraint produces pulses with much low
inversion pulses the phases of the transition amplitudes greéak RF power.
unimportant. Any waveform which evolves according to a REFERENCES
modified KdV equation produces identical inversion profiles,
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